See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/312873180

Effects of extreme low frequency pulsed electromagnetic field added to kinesitherapy procedure on quality of life in patients with end stage renal disease on dialysis

SEE PROFILE

Article in Vojnosanitetski pregled. Military-medical and pharmaceutical review · January 2017 DOI: 10.2298/VSP160620007R CITATIONS READS 0 3,383 6 authors, including: Nada Dimkovic

Miljanka Vuksanovic KBC Zvezdara Belgrade KBC Zvezdara Belgrade 21 PUBLICATIONS 3,446 CITATIONS 252 PUBLICATIONS 2,837 CITATIONS SEE PROFILE Natasa D Petronijevic University of Belgrade

Some of the authors of this publication are also working on these related projects:

transferin deficijentan ugljenim hidratima View project

ANIMAL MODEL OF SEIZURE View project

94 PUBLICATIONS 1,025 CITATIONS

SEE PROFILE

VOJNOSANITETSKI PREGLED VOJNOMEDICINSKA AKADEMIJA Crnotravska 17, 11 000 **Beograd, Srbija** Tel/faks: +381 11 2669689 <u>vsp@vma.mod.gov.rs</u>

ACCEPTED MANUSCRIPT

Accepted manuscripts are the articles in press that have been peer reviewed and accepted for publication by the Editorial Board of the *Vojnosanitetski Pregled*. They have not yet been copy edited and/or formatted in the publication house style, and the text could still be changed before final publication.

Although accepted manuscripts do not yet have all bibliographic details available, they can already be cited using the year of online publication and the DOI, as follows: article title, the author(s), publication (year), the DOI.

Please cite this article: EFFECTS OF EXTREME LOW FREQUENCY PULSED ELECTROMAGNETIC FIELD ADDED TO KINESITHERAPY PROCEDURE ON QUALITY OF LIFE IN PATIENTS WITH END STAGE RENAL DISEASE ON DIALYSIS

Authors: Aleksandra Rakočević Hrnjak^{*}, Miljanka Vuksanović[†], Nada Dimković[†], Aleksandar Đurović[‡], Nataša Petronijević[#], Milan Petronijević[§]; Vojnosanitetski pregled (2017); Online First January, 2017.

UDC:

DOI: 10.2298/VSP160620007R

When the final article is assigned to volumes/issues of the Journal, the Article in Press version will be removed and the final version appear in the associated published volumes/issues of the Journal. The date the article was made available online first will be carried over.

^{*}Centre of Physical Medicine and Rehabilitation, University Medical Centre Zvezdara, Belgrade, Serbia

[†] Clinic of Internal Medicine, University Medical Centre Zvezdara, Belgrade, Serbia

[‡] Clinic for Physical Medicine and Rehabilitation, Military Medical Academy, Medical Faculty, University of Defence, Belgrade, Serbia

Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Serbia

[§] Clinic for Rheumatology and Clinical Immunology, Military Medical Academy, Medical Faculty, University of Defence, Belgrade, Serbia

Corresponding author:

Milan Petronijević, MD PhD,

Clinic for Rheumatology and Clinical Immunology, Military Medical Academy, Medical Faculty, University of Defence, Crnotravska 17, Belgrade, Serbia

Email: milanpetronijevic@yahoo.com

Abstract

Introduction. Extreme Low Frequency Pulsed Electromagnetic Magnetic Field (ELF-PEMF) has a wide range of therapeutic applications which has expanded during the last decades. ELF-PEMF as non-invasive, long term safe method of physical therapy can influence a variety of aspects in chronic diseases including quality of life. Patients with chronic kidney disease (CKD) especially with end stage renal disease (ESRD) treated by dialysis have lower health-related quality of life and changed normal way of living because of ESRD-related co morbid illnesses, associated conditions and complex dyalisis

procedures. The objective of this study was to assess the effectiveness of long-term ELF-PEMF in concordance with exercising on the quality of life in ESRD patients on dialysis.

Methods. Total of 124 patients (59 men and 65 women) with ESRD on dialysis program were divided in study group and control group. Patients included in the study group (n=54) have agreed to receive during three years the treatment with ELF-PEMF (18 Hz, 2 mT, applied during 40 minutes after ten consecutive dialysis procedures, four times through one year, 120 treatments in total) together with kinesitherapy. Patients in control group (n=70) have been subjected only to kinesitherapy as a physical therapy procedure. The quality of life was assessed through SF36v2 and FACIT Fatigue v4 questionnaires.

Results. In study group treatment with ELF-PEMF significantly improved FACIT Fatigue v4 scale score as well as physical health, physical functioning, bodily pain and energy/fatigue domains of SF=36v2 scale. There were no effects on mental health domain, limitations due to physical health problems, limitations due to personal or emotional problems, emotional well-being, social functioning, and general health perceptions. In the control group, no beneficial effects on FACIT Fatigue v4 scale and SF36v2 scale item were noticed.

Conclusion. ELF-PEMF could be a additional and safe strategy for improving the quality of life in patients with ESRD on dialysis.

Key words: Extreme low frequency pulsed electromagnetic field, End stage renal disease, Dialysis, Quality of life

Apstrakt

Uvod. Pulsno elektromagnetno polje ekstremno niske frekvencije (ELF-PEMF) ima široki spektar terapeutske primene koji se povećava poslednjih godina. ELF-PEMF kao neinvazivna, dugoročno bezbedna metoda fizikalne terapije može povoljno uticati na različite aspekte u hroničnim bolestima. Pacijenti sa terminalnom bubrežnom slabošću, posebno oni na dijalizi imaju nizak kvalitet života uslovljen komorbiditetima, pridruženim stanjima i kompleksnom procedurom dijalize. Cilj studije je bio ispitivanje efekata dugoročne primene ELF-PEMF uz kineziterapiju na kvalitet života bolesnika sa terminalnom bubrežnom slabošću na dijalizi.

Metode. U studiju je uključeno 124 bolesnika (59 muškaraca i 65 žena) sa terminalnom bubrežnom slabošću na programu hemodijalize. Formirane su dve grupe ispitanika: studijska grupa (n=54), bolesnici koji su dobrovoljno pristali da uz kineziterapiju u naredne tri godine dobijaju i ELF-PEMF tretman (18 Hz, 2 mT, tokom 40 minuta posle deset uzastopnih procedura hemodijalize, četiri puta tokom jedne godine, ukupno 120 tretmana) i kontrolna grupa (n=70), kod koje je od fizikalnih procedura primenjivana samo kineziterapija. Kvalitet života je procenjivan na osnovu SF36v2 i FACIT Fatigue v4 upitnika.

Rezultati. U studijskoj grupi posle primene ELF-PEMF značajno su poboljšani skorovi FACIT Fatigue v4 skale, kao i domeni fizičkog zdravlja, fizičkog funkcionisanja, bola i energije SF=36v2 skale. ELF-PEMF nije imala efekte na domene mentalnog zdravlja, ograničenja zbog fizičkog zdravtsvenog stanja, ograničenja zbog personalnih ili emocionalnih problema, emocionalog stanja, socijalnog funkcionisanja i utiska opšteg zdravlja. U kontrolnoj grupi nije primećeno poboljšanje skora FACIT Fatigue v4 skale ni skora bilo kojeg domena SF36v2 skale.

Zaključak. ELF-PEMF bi mogla predstavljati dodatnu i bezbednu metodu u pokušaju poboljšanja kvaliteta života bolesnika sa terminalnom bubrežnom slabošću na dijalizi.

Ključne reči. Pulsno elektromagnetno polje ekstremno niske frekvencije, terminalna bubrežna slabost, hemodijaliza, kvalitet života

Introduction

Based on experimental trials and early clinical findings, the United States Food and Drug Administration (FDA) approved pulsed electromagnetic fields (PEMF) for the treatment of delayed union or nonunion fractures, failed joint fusions, and congenital pseudarthroses^{1, 2}. For therapeutic purposes PEMF are typically applied at extremely low frequencies between 5 and 300 Hz - Extreme Low Frequency Pulsed Electromagnetic Magnetic Field (ELF-PEMF). ELF-PEMF has a wide range of other therapeutic applications. The scientific evidences for therapeutic effects of PEMF are proven in some indications while data in the others are mostly empiric, observational and insufficient. The review of four meta-analyses of randomized trials investigating the use of ELF-PEMF for fracture healing confirmed

clinical validity of this method of physical therapy³. Also, in some observation and crosssectional studies beneficial effects of ELF-PEMF are found and this procedure is recommended as adjuvant therapy in osteoporosis and other conditions associated with accelerated bone loss or high bone turnover⁴. PEMF treatment was also regarded as a viable alternative for arthritis therapy by virtue of chondroprotective and anti-inflammatory effects⁵. The administration of ELF-PEMF is followed by the high variability in terms of magnetic flux density, signal type, frequency, duration, and number of treatment sessions². Despite the lack of a proven biological mechanism and diversity of applied parameters, indications for ELF-PEMF treatment have been growing during the last decades. The most frequent indications are mentioned musculoskeletal disorders, but other therapeutic areas include fixation of cementless implants, wound healing, skin ulcers, fibromyalgia, neurological diseases, chronic pain, insomnia, spasticity in multiple sclerosis and even cardiovascular disorders.

It is important that adverse effects of ELF-PEMF as non-invasive, long term safe method have not been reported. There is no discomfort or known risk associated with ELF-PEMF. The method is easy to apply and the cost is low. Some authors assert ELF-PEMF as important in well being^{2, 6}.

Chronic kidney disease (CKD) affects 5-10% of the world population and is associated with many adverse outcomes. It is progressive and leads to end stage renal disease (ESRD) which is treated mostly by dialysis⁷. According to United Kingdom renal registry, about 90% of ESRD patients is on the maintenance dialysis program and data show that the incidence of new patients starting on hemodialysis increased by 1.2% in 2013⁸. Beside of the higher mortality rate of ESRD patients, the disease is also associated with greater health expenditures and lower health-related quality of life due to co morbid illnesses and frequent dialysis centers and hospital visits. It implies substantial changes in the patients' normal daily activities and suboptimal quality of life⁹. Also, numerous physical and mental symptoms affect quality of life. Dialysis-dependent patients have numerous physical symptoms, reporting fatigue, pain, cramps, poor nutrition, and inactivity, increased risk of falling and sexual dysfunction due to hypotension, myopathy and peripheral neuropathy 10 . On the other hand, depression, stress, anxiety and sleep disturbances are also very common¹¹. Despite the relevance of symptoms, health care providers as well as patients themselves are not adept at recognizing these items and they are usually underestimated. Additionally, evidence-based dialysis treatment interventions and symptom-targeted pharmaceutical therapies are lacking, except the use of erythropoiesis stimulating agents that can reduce fatigue¹². Administration of nonpharmacologic steps including exercise and physical therapy that may contribute to improve quality of life is still rare. Physical activity is important aspect for the prevention and treatment of chronic diseases, including ESRD. The prescription of exercise for CKD patients is less usual than for other chronic diseases considering that CKD patients have low aerobic capacity¹³. Assuming the benefits, in our hemodialysis center, exercise has been pointed as an important component of treatment in all patients with ESRD on hemodialysis program.

Results of our previous prospective controlled study¹⁴ have provided evidences for a beneficial effect of three years ELF-PEMF on bone mineral density (BMD) and risk of fracture in ESRD patients on dialysis suggesting, for the first time, that this physical procedure have a clinical relevance as a successful adjuvant option in ESRD patients without reported side-effects. Due to mentioned pleiotropic effects of ELF-PEMF and the finding of positive effects of this treatment on bones, it can be presumed that this physical procedure may influence overall quality of life. So, the objective of this study was to assess the effectiveness of long-term ELF-PEMF in concordance with exercising on the quality of life in ESRD patients on dialysis.

Methods

Patients

We conducted a three-year prospective clinical trial with two parallel groups in both sex patients with ESRD on dialysis.

Participants were selected according to the following criteria: diagnosis of ESRD, current hemodialysis treatment and volunteer participation. Patients, who met the entry criteria, were informed and gave consent according to the ethical standards of the Helsinki Declaration of 1983 and ICH-GCP. The study was approved by the Independent Ethics Institutional Review Committee of the University hospital "Zvezdara" as the part of Faculty of Medicine of the Belgrade University, Serbia on April, 19, 2011.

Collection of demographic and case history data was performed by reviewing case notes and treatment records. Total of 151 patients with ESRD on dialysis program were divided in study group and control group. In the study group were included patients that have agreed to receive the treatment with ELF-PEMF (18 Hz, 2 mT, applied during 40 minutes after ten consecutive dialysis procedures, four times through one year, 120 treatments in total) together with kinesitherapy during three years. Control group involved patients that have been subjected only to kinesitherapy as a physical therapy procedure.

Out of 151 patients initially enrolled in the study (64 in the study group and 87 in the control group), total 124 patients (54 in the study group and 70 in the control group) have completed all treatments and testing after three years. Ten patients in the study group and seventeen in the control group dropped out of the study: two (one from each group) due to change in concomitant therapy and twenty five (nine from the study and sixteen from the control group) due to the death related to cardiovascular events. During the follow-up period, not a single patient underwent renal transplantation, was transferred to another dialysis center or changed the dialysis mode. Finally there were 29 females and 25 males in the study group and 36 females and 34 males in the control group.

All patients had a chronic renal failure of a different origin (primary chronic glomerulonephritis, tubulointerstitial nephritis, nephroangiosclerosis, diabetic nephropathy) and were on dialysis program with hemodialysis product 36, for at least one year. Further inclusion criteria required patients to be at least 25 years old. All patients have continued with their basic therapeutic regimen (vitamin D, calcium and phosphate binder supplementation) during the observation period. Exclusion criteria were: any relative or absolute contraindication for either ELF-PEMF or kinesitherapy treatment, any disorder affecting the bone metabolism (except renal failure and hyperparathyreoidism) and any medication affecting the bone metabolism (except vitamin D, calcium and heparin during hemodialysis).

Physical therapy procedures

We performed our own treatment protocol based on the fact that the best results are achieved with ELF-PEMF with low frequency (below 60 Hz), induction value between 1pT and 15mT as intermittent use of PEMF stimulation which has been shown to produce superior outcome responses to continuous use². The magnetic field pad (35x27x13 cm) was a Magomil 2 (Electronic Design Medical, Belgrade, Serbia), with computed device for ELF-PEMF (18 Hz, 2 mT) and was applied during 40 minutes after ten consecutive dialysis procedures, four times through one year (120 treatments in total during three years). The kinesitherapy treatment (active and passive-assisted exercises per segments in two series with ten repeats) has been dosed individually according to general shape during 30 minutes

after every dialysis procedure and was carried out by the same physiotherapist who had been trained in the treatment scheme according to the usual program.

Biochemical analyzes were performed routinely using standard certified procedures for measuring of investigated parameters. Serum urea, creatinine, albumin, calcium, phosphate and intact PTH levels were measured and monitored using standard techniques.

Assessment of quality of life

The subjects filled out the following questionnaires at the beginning and once per year: SF36v2 (*Short Form Health Survey, version 2*) and FACIT Fatigue v4 (*Functional Assessment of Chronic Illness Therapy, version 4*) scales^{15, 16}. Scores are calculated on line. Because functional capacity is usually impaired in CKD patients, reaching 60–65% of the age-predicted value¹⁷, we could not perform some other explicit tests in our patients except questionnaires.

Statistical analyzes

For the statistical analysis the patient data were entered on a computer Excel® (Microsoft Office) sheet and subsequently analyzed with the Origin Pro 8.5 statistical software (Stata Corporation, College Station, TX, USA). Group data are expressed as mean ± SD. One-sample Kolmogorov-Smirnov test was used for the testing of normal distribution of data. Summary statistics, including mean, standard deviation (SD), range and percentiles were calculated for demographic data, SF36v2, FACIT Fatigue v4 scales results. One way ANOVA and t-test for depended samples were used to investigate differences between groups for parametric variables and Chi-square test for nonparametric variables. Observations were considered significant if two-tailed P values were below 0.05.

Results

Demographic and clinical data of the patients that have completed the study are presented on Table 1 and Table 2. It is important to note that the patients in finally analyzed groups were comparable in relation to age, duration of dialysis, BMI, smoking history, presence of bone fractures, PTH levels and primary cause of renal failure at the beginning of investigation.

Table 1

Table 2

Analyzed groups of the patients were at the beginning of the study also comparable in relation to the values of FACIT Fatigue v4 scale score and SF36v2 scale scores through two domains and eight subdomains (Table 3).

Table 3

The changes of FACIT Fatigue v4 scale score and SF36v2 scale scores (calculated through physical and mental health domains and all eight subdomains, physical functioning, bodily pain, limitations due to physical health problems, limitations due to personal or emotional problems, emotional well-being, social functioning, energy/fatigue and general health perceptions) after three year treatment with ELF-PEMF in the study group are presented in Table 4. Treatment with ELF-PEMF significantly improved FACIT Fatigue v4 scale scores as well as physical health, physical functioning, bodily pain and energy/fatigue domains of SF=36v2 scale. There were no effects on mental health domain, role limitations due to physical health problems, role limitations due to personal or emotional well-being, social functioning, and general health perceptions.

Table 4

In the control group, three year follow up had no beneficial effects on any FACIT Fatigue v4 scale and SF36v2 scale item (Table 5).

Table 5.

During the study, ELF-PEMF administration was completed without any side-effects.

Discussion

In this paper we report the improvement of some aspects of quality of life in ESRD patients on dialysis subjected to ELF-PEMF in twelve sessions during three years. In our previous article¹⁴ we have shown positive effects of this physical procedure on BMD and risk of fracture in ESRD patients on dialysis without reported side-effects. Also, there was slightly but not significant effect on patient overall survival¹⁴. However, as it can be expectable, this therapy did not have effects on urea, creatinine and parathormone levels, as well as ESRD and dialysis outcome, due to irreversible kidney damage.

In chronic diseases, over the past few decades, quality of life research endpoints have developed as valuable research tools in assessing the outcome of therapeutic interventions. Quality of life, as defined by the World Health Organization in 1994, is the individuals' perception of their position in life in the context of the culture and value systems in which they live and in relation to their goals, expectations, standards and concerns¹⁸. It

comprehends a wide range of indicators covering overall satisfaction with life in areas such as health, housing conditions, employment, safety, education, and leisure¹⁸. ESRD is one such chronic disease causing a high level of disability in different domains of the patients' lives, leading to impaired quality of life. In ESRD patients the physical, social, and emotional impacts of quality of life are affected by disease itself and also by its treatment. Dialysis therapy is time-intensive, expensive, and requires fluid and dietary restrictions, results in a loss of freedom, dependence on caregivers, disruption of marital, family, and social life, and reduced or loss of financial income, compromising quality of life.

Some physical procedures, such as exercise, have been shown to improve quality of life in CKD patients due to positive effects on physical fitness, muscular strength, muscular functioning, walking capacity and cardiovascular function¹³. ELF-PEMF delivered by whole-body mats are promoted in many countries for a wide range of therapeutic applications and for enhanced well-being⁶. The mechanism of biophysical interactions between ELF-PEMF and tissue is still not completely understood. It is suggested that external magnetic stimuli interact with cells either via transmembrane receptors or ion channels, thereby initiating one or more signal transduction cascades or cell functions¹⁹. ELF-PEMF has been shown to increase blood supply²⁰. It can mimic and potentiate effects of physical activity on osteogenesis²¹. The application of ELF-PEMF as a physical stress promotes the formation of very small electric currents, piezoelectric potentials. Piezoelectric potentials are due primarily to movement of fluid-containing electrolytes. When these electrolytes move, they generate streaming potentials transforming mechanical stress into an electrical phenomenon capable of stimulating synthesis of tissue components. Time varying ELF-PEMF also generates changes in metabolic activity. Interaction between cell membrane and ELF-PEMF modulates critical events in signal transduction mechanisms such as Ca²⁺ influx and mobilization, surface receptors redistribution and protein kinase C activity. PEMF can produce a modification of membrane cytoskeleton organization, together with an alteration of protein kinase activity, modify membrane structure and interfere with initiation of signal cascade pathway. Significant reduction of proinflammatory cytokines such as TNFa and IL-6 and inflammatory mediators like PGE2 are noticed. In mice models the expression levels of angiopoietin-2 and fibroblast growth factor-2 are increased and angiogenesis acceleration is suggested as a possible mechanism of ELF/PEMF action.

In our study, the effects of ELF-PEMF on the quality of life of patients with CKD on dialysis were assessed for the first time. We used the SF36v2 scale. The SF 36v2 scale is 36-item generic health-related quality of life questionnaire that consists of 36 questions related to physical and mental health status and an proven objective mean to measure aspects of quality of life such as physical, psychological, social, and cultural conditions from the perspective of patients with chronic diseases. Although some other instruments as self-report measure of quality of life are developed for ESRD patients on dialysis like The Kidney Disease Quality of Life (KDQOL), many investigators are reluctant to use it because of its length (43 kidney-disease targeted items as well as 36 items from SF36v2 scale that provide generic core of instrument)²².

We have found that treatment with ELF-PEMF combined with exercise significantly improve FACIT Fatigue v4 scale scores, as well as, physical health, physical functioning, bodily pain and energy/fatigue domains of SF=36v2 scale. In the control group, exercise applied as only physical procedure did not show significant effects on these domains, although some slight but not significant effects were reached in physical functioning and bodily pain domains. The effects of exercise on quality of life in ESRD patients on dialysis are often inconsistent. Barcellos and coworkers have analyzed results of 18 studies and in 11 of them found increases of quality of life in exercise group both in aerobic and resistance training. However, 4 of this studies found improvement only in the physical component. The Dialysis Morbidity and Mortality Study, a cohort study, found that dialysis patients engaged in more frequent exercise presented a significantly reduced mortality rate versus less active peers²³.

The finding of pain reduction could be an important factor in improving quality of life in ESRD patients treated with ELF-PEMF in combination with kinesitherapy. ELF-PEMF is a well known physical agent which can influence chronic pain conditions, especially refractory pain. The investigation of analgesic effectiveness of ELF-PEMF administered twice daily over a 45-day period in 34 subjects with persistent or recurrent pain following back surgery showed that 33% reported a clinically meaningful (\geq 30%) reduction in pain intensity²⁴. Improvements in pain intensity were paralleled by improvements in secondary outcomes. Very low-intensity magnetic stimulation may represent a safe and effective treatment for chronic pain and other symptoms associated with conditions without structural damages, but with dysfunctional disorders like fibromyalgia^{25,26}. ELF-PEMF can also influence modification of pain in polyneuropathy which is common in ESRD patients

on dialysis^{27, 28}. Not only nociception but also transduction, transmission, perception, interpretation and modulation of pain have been reported to be influenced by exposure to electromagnetic fields²⁹. The mechanisms by which central nervous exposure to weak electromagnetic fields may have analgesic and antinociceptive effects remain to be elucidated. There is evidence that endogenous opioid systems are affected by magnetic fields²⁹.

According to our results there were no effects of ELF-PEMF on mental health domain, role limitations due to physical health problems, role limitations due to personal or emotional problems, emotional well-being, social functioning, and general health perceptions.

These domains of SF36v2 are narrowly associated with psychological symptoms in patients with ESRD on dialysis. There are a lot of publications related to psychological symptoms in patients with ESRD on dialysis. Previous studies have found that the psychological symptoms do affect quality of life and have discussed the association between psychological symptoms with quality of life of dialysis patients^{11, 30}. According to reports, among dialysis patients about 27-36% express depression, 38-46% anxiety and about 20% chronic stress^{11, 31}. Depression, anxiety and stress significantly contribute to a reduced quality of life in dialysis patients' domains of physical health, psychological health, social impact, perceived environment and overall quality of life. Kousolula and coworkers noticed that overall mood and emotional domains of quality of life correlated with age, higher education, shorter duration of dialysis, better family or social environment⁹. Chronic renal failure affects both patients and their families. Beside sociodemographic variables many others could be the reason for decreased mood and emotional feeling, including health expenditures, frequent dialysis centers visits, ability to travel, financial issues, problems having access to dialysis, comorbid illness, poor nutrition, sexual dysfunction, fluid and dietary restrictions, social support³². In our study, ELF-PEMF lacked to express any significant changes in these domains. In the literature there are a very small number of papers investigating effects of ELF-PEMF on mental health. Martiny and coworkers published that the transcranial PEMF treatment was superior to sham treatment in patients with ESRD treatment-resistant depression³³.

The other aspect is effects of ELF-PEMF on fatigue. Regenerative benefits of ELF-PEMF on fatigue in chronic diseases were confirmed in numerous conditions. In the long-term study, a beneficial effect of ELF-PEMF on multiple sclerosis fatigue was demonstrated indicating that it could be a useful therapeutic modality³⁴. Evidence from this randomized,

double-bind, placebo controlled trial is consistent with results from smaller studies suggesting that exposure to pulsing; weak electromagnetic fields can alleviate symptoms of multiple sclerosis³⁵.

However, our study had limitations that should be addressed in future research. Some aspects of mental health are assessed by questionnaires but not by mental health professionals. Therefore, the chances of false positive and false negative results are increased. The other restrictions included the lack of analysis of some sociodemographic and clinical data which might interfere with patient quality of life and lack of the possibility to study subgroups by energy levels or other parameters of treatment in order to produce recommendations for future studies. Finally, more controlled and double blind studies including more patients might narrow down suspicions and show significant effects with the full support of our findings.

In conclusion, treatment with ELF-PEMF significantly improves physical health, physical functioning, bodily pain and energy/fatigue. Importantly, there have been no reports of side-effects of ELF-PEMF which had a clearly superior safety profile. Our results left enough space for improvement to significant values in forthcoming, larger studies. The time to onset and subsequent longevity of ELF-PEMF effects should be considered in future study design to achieve an accurate measurement. A clearer definition of the mechanisms might also help in choosing patients who are more likely to benefit from such a treatment.

REFERENCE:

- 1. Bassett CA. Fundamental and practical aspects of therapeutic uses of pulsed electromagnetic fields (pEMFs). Crit Rev Biomed Eng 1989; 17: 451–529.
- Shupak NM. Therapeutic uses of pulsed magnetic-field exposure: a review. Radio Science Bulletin 2003; 307: 9-32.
- 3. Goldstein C, Sprague S, Petrisor BA. Electrical stimulation for fracture healing: current evidence. J Orthop Trauma 2010; 24 Suppl 1:S62-5.
- Tabrah F, Hoffmeier M, Gilbert F Jr, Batkin S, Bassett CA. Bone density changes in osteoporosis-prone women exposed to pulsed electromagnetic fields (PEMFs). J Bone Miner Res 1990; 5(5): 437-42.
- Negm A, Lorbergs A, Macintyre NJ. Efficacy of low frequency pulsed subsensory threshold electrical stimulation vs placebo on pain and physical function in people with knee osteoarthritis:systematic review with meta-analysis. Osteoarthritis Cartilage 2013; 21(9):1281-9.
- Hug K, Röösli M. Therapeutic effects of whole-body devices applying pulsed electromagnetic fields (PEMF): a systematic literature review. Bioelectromagnetics 2012; 33: 95-105.
- Wagner J, Jhaveri KD, Rosen L, Sunday S, Mathew AT, Fishbane S. Increased bone fractures among elderly United States hemodialysis patients. Nephrol Dial Transplant 2014; 29 (1): 146-51.
- Graham-Brown MPM, Churchward DR, Smith AC, Baines RJ, Burton JO. A 4-month programme of in-centre nocturnal haemodialysis was associated with improvements in patient outcomes. Clinical Kidney Journal 2015; 8 (6): 789–95.
- 9. Kousolula G, Lagou L, Lena M, Alikari V, Theofilou P, Polikandrioti M. Quality of life in hemodialysis patients. Mater Sociomed 2015; 27 (5): 305-9.
- Gonçalves FA, Dalosso IF, Borba JM, Bucaneve J, Valerio NM, Okamoto CT, et al. Quality of life in chronic renal patients on hemodialysis or peritoneal dialysis: a

comparative study in a referral service of Curitiba - PR. J Bras Nefrol 2015; 37(4): 467-74.

- Bujang MA, Musa R, Liu WJ, Chew TF, Lim CT, Morad Z. Depression, anxiety and stress among patients with dialysis and the association with quality of life. Asian J Psychiatr 2015; 18:49-52.
- Saad MM, El Douaihy Y, Boumitri C, Rondla C, Moussaly E, Daoud M, et al. Predictors of quality of life in patients with end-stage renal disease on hemodialysis. Int J Nephrol Renovasc Dis 2015; 8: 119-23.
- Barcellos FC, Santos IS, Umpierre D, Bohlke M, Hallal PC. Effects of exercise in the whole spectrum of chronic kidney disease: a systematic review. Clin Kidney J 2015; 8 (6):753-65.
- Rakočević Hrnjak A, Vuksanović M, Dimković N, Đurović A, Petronijević N, Petronijević M. The effects of extreme low frequency pulsed electromagnetic field on bone mineral density and incidence of fractures in patients with end stage renal disease on dialysis - three year follow up study. Vojnosanit Pregl 2016; DOI: 10.2298/VSP160617212R
- 15. Ware JE, Kosinski M, Keller SD. SF-36 physical and mental health summary scales: a user manual. Boston MA: The health institute, New England Medical Center, 1995.
- Webster K, Cella D, Yost K. The Functional Assessment of Chronic Illness Therapy (FACIT) Measurement System: properties, applications, and interpretation. Health Qual Life Outcomes 2003; 1: 79- 85.
- Esteve Simo V, Junqué Jiménez A, Moreno Guzmán F, Carneiro Oliveira J, Fulquet Nicolas M, Pou Potau M, et al. Benefits of a low intensity exercise programme during haemodialysis sessions in elderly patients. Nefrologia 2015; 35 (4): 385-94.
- Bergner M. Quality of life, health status, clinical research. Med Care 1989; 27: S148-56.
- Bachl N, Ruoff G, Wessner B, Tschan H. Electromagnetic interventions in musculoskeletal disorders. Clin Sports Med 2008; 27(1): 87–105.
- 20. Bragin DE, Statom GL, Hagberg S, Nemoto EM. Increases in microvascular perfusion and tissue oxygenation via pulsed electromagnetic fields in the healthy rat brain. J Neurosurg 2015; 122(5): 1239-47.
- Rajabi AH, Jaffe M, Arinzeh TL. Piezoelectric materials for tissue regeneration: A review. Acta Biomater 2015; 24: 12-23. 7.

- Sathvik BS, Parthasarathi G, Narahari MG, Gurudev KC. An assessment of the quality of life in hemodialysis patients using the WHOQOL-BREF questionnaire. Indian J Nephrol 2008; 18 (4): 141–9.
- 23. Stack AG, Molony DA, Rives T, Tyson J, Murthy BV. Association of physical activity with mortality in the US dialysis population. Am J Kidney Dis; 45: 690–701.
- 24. Harper WL, Schmidt WK, Kubat NJ, Isenberg RA. An open-label pilot study of pulsed electromagnetic field therapy in the treatment of failed backsurgery syndrome pain. Int Med Case Rep J 2014; 8: 13-22.
- 25. Maestu C, Blanco M, Nevado A, Romero J, Rodriguez-Rubio P, Galindo J, et al. Reduction of pain thresholds in fibromyalgia after very low-intensity magnetic stimulation: A double-blinded, randomized placebo-controlled clinical trial. Pain Res Manag 2013; 18(6): 101–6.
- 26. Sutbeyaz ST, Sezer N, Koseoglu F, Kibar S. Low-frequency pulsed electromagnetic field therapy in fibromyalgia: a randomized, double-blind, sham-controlled clinical study. Clin J Pain; 25 (8): 722-8.
- 27. Weintraub MI, Herrmann DN, Smith AG, Backonja MM, Cole SP. Pulsed electromagnetic fields to reduce diabetic neuropathic pain and stimulate neuronal repair: a randomized controlled trial. Arch Phys Med Rehabil; 90 (7): 1102-9.
- 28. Wróbel MP, Szymborska-Kajanek A, Wystrychowski G, Biniszkiewicz T, Sieroń-Stołtny K, Sieroń A, et al. Impact of low frequency pulsed magnetic fields on pain intensity, quality of life and sleep disturbances in patients with painful diabetic polyneuropathy. Diabetes Metab 2008; 34 (4 Pt 1): 349-54.
- 29. Thomas AW, Graham K, Prato FS, McKay J, Forster PM, Moulin DE, et al. A randomized, double-blind, placebo-controlled clinical trial using a low-frequency magnetic field in the treatment of musculoskeletal chronic pain. Pain Res Manag 2007; 12 (4): 249-58.
- Zhang M, Kim JC, Li Y, Shapiro BB, Porszasz J, Bross R, et al. Relation Between Anxiety, Depression and Physical Activity and Performance in Maintenance Hemodialysis Patients. J Ren Nutr 2014; 24(4): 252–60.
- 31. Anand S, Johansen KL, Grimes B, Kaysen GA, Dalrymple LS, Nancy G et al. Kutner, physical activity and self-reported symptoms of insomnia, restless legs syndrome and depression: the comprehensivedialysis study. Hemodial Int 2013; 17 (1): 50–8.

- 32. Jassal SV, Karaboyas A, Comment LA, Bieber BA, Morgenstern H, Sen A et al. Functional Dependence and Mortality in the International Dialysis Outcomes and Practice Patterns Study (DOPPS). Am J Kidney Dis 2016; 67(2):283-92.
- 33. Martiny C, e Silva AC, Neto JP, Nardi AE. Psychiatric disorders in patients with endstage renal disease.J Ren Care 2012; 38 (3): 131-7.
- Haase R, Piatkowski J, Ziemssen T. Long-term effects of Bio-Electromagnetic-Energy Regulation therapy on fatigue in patients with multiple sclerosis. Altern Ther Health Med 2011; 17 (6): 22-8.
- 35. Lappin MS, Lawrie FW, Richards TL, Kramer ED. Effects of a pulsed electromagnetic therapy on multiple sclerosis fatigue and quality of life: a double-blind, placebo controlled trial. Altern Ther Health Med 2003; 9 (4): 38-48.

Table 1.

		Female			Male	
Parameter	Study	Control	р	Study	Control	
	group	group		group	group	р
	n=29	n=36		n=25	n=34	
Age (years)	500101	(1,2) + 7.6	F=1.89	(2, 2) + 7, 4	(1.2 + 12.6	F=0.55
$X \pm SD$	56.9 ± 6.4	61.2 ± 7.6	P=0.13	63.2 ± 7.4	61.2 ± 13.6	P=0.85
Duration of			E- 1 64			E- 1 46
dyalisis (years)	9.3 ± 5.6	9.2 ± 6.6	$\Gamma = 1.04,$ P = 0.17	8.8 ± 3.7	8.7 ± 3.4	$\Gamma = 1.40$
$X \ \pm SD$			P=0.17			P=0.20
BMI (kg/m ²)	22.7 ± 2.2	24.0 ± 5.4	F=2.15	25.0 ± 2.8	22.7 ± 2.5	F=10.9
$X \ \pm SD$	23.1 ± 3.2	24.9 ± 3.4	P=0.09	23.9 ± 2.8	23.7 ± 3.3	P=0.08
Duration of	0.0 ± 4.5	10.9 ± 6.2	F=1.72			
menopause	9.0 ± 4.5	10.8 ± 0.2	P=0.15			

Demographic and clinical data of female and male dialysis patients in study and control groups at the beginning of investigation

(years), $X \pm SD$

Early menopause	20.7	167	Chi=0.07			
(%)	20.7	10.7	P=0.98			
Ever smoked	44.9	47.0	Chi=0.01	72.0	61 7	Chi=0.13
(%)	44.8	47.2	P=0.99	72.0	01.7	P=0.87
Present smoking	20.7	10.4	Chi=0.01	40.0	41 1	Chi=0.01
(%)	20.7	19.4	P=0.99	40.0	41.1	P=0.99
Bone fractures	21.0	22.2	Chi=0.26	24.0	20.5	Chi=0.04
(%)	31.0	22.2	P=0.88	24.0	20.5	P=0.99
PTH (pg/mL)	761 + 105	700 + 147	F=1.08	705 110	774 - 114	F=1.18
$X \ \pm SD$	701 ± 125	/88 ± 14/	P=0.61	/95 ± 119	/ 74 ± 114	P=0.55

BMI: Body mass index, BMD: Bone mineral density, PTH: Parathyroid hormone

Table 2.

Frequency of causes of primary diagnosis of renal failure patients in study and control groups

	Study group	Control group	
Diagnosis	n=54 (%)	n=70 (%)	р
Primary chronic glomerulonephritis	21 (38.9)	29 (41.4)	ns
Tubulointerstitial nephritis	4 (7.4)	6 (8.6)	ns
Nephroangiosclerosis	11 (20.4)	14 (20)	ns
Diabetic nephropathy	16 (29.6)	18 (25.7)	ns
Polycystic renal disease	2 (3.7)	3 (4.3)	ns

Table 3.

FACIT Fatigue v4 and SF36v2 scores of patients in the study and the control groups at the beginning

of investigation

Parameter	Study group	Control group	р
	n=54	n=70	
	$X\pm SD$	$X \pm SD$	
FACIT Fatigue v4	20.35±9.54	21.36±10.38	0.85
SF36v2 physical health	50.72±10.33	48.75±9.72	0.83
SF36v2 mental health	59.52±17.05	62.58±14.45	0.88
SF36v2 physical functioning	54.38±16.19	52.35±15.23	0.91
SF36v2 bodily pain	50.91±7.55	52.12±10.26	0.92
SF36v2 limitations due to physical health problems	43.61±12.74	44.65±13.24	0.89
SF36v2 limitations due to personal or emotional	65.18±23.39	67.58±25.22	0.83
problems			
SF36v2 emotional well-being	71.55±19.37	70.25±20.87	0.89
SF36v2 social functioning	49.02±21.70	47.36±22.32	0.87
SF36v2 energy/fatigue	51.55±23.31	50.21±19.27	0.92
SF36v2 general health perceptions	54.05±12.91	55.58±14.35	0.90

Table 4.

Effects of three year treatment with ELMF on values of FACIT Fatigue v4 scale score and SF36v2 scale scores of dialysis patients in the study group (n=54)

Parameter	Before treatment After treatment		р
	$X \pm SD$	$X \pm SD$	
FACIT Fatigue v4	20.35±9.54	41.35±12.35	p<0.05
SF36v2 physical health	50.72±10.33	68.13±11.54	p<0.05
SF36v2 mental health	59.52±17.05	59.33±15.39	p=0.98
SF36v2 physical functioning	54.38±16.19	65.33±16.57	p<0.05
SF36v2 bodily pain	50.91±7.55	69.77±12.87	p<0.05
SF36v2 limitations due to physical health	43.61±12.74	51.11±15.86	p=0.25
problems			
SF36v2 limitations due to personal or emotional	65.18±23.39	63.32±13.41	p=0.85
problems			
SF36v2 emotional well-being	71.55±19.37	71.28±18.10	p=0.82
SF36v2 social functioning	49.02±21.70	52.36±19.78	p=0.93
SF36v2 energy/fatigue	51.55±23.31	61.22±21.13	p<0.05
SF36v2 general health perceptions	54.05±12.91	56.05±10.56	p=0.89

Effects of three year treatment with ELMF on values of FACIT Fatigue v4 scale score and SF36v2 scale scores of dialysis patients in the control group (n=70)

Parameter	Before treatment	After treatment	р
	$X \pm SD$	$X\pm SD$	
FACIT Fatigue v4	21.36±10.38	22.74±12.54	p=0.88
SF36v2 physical health	48.75±9.72	48.75±15.58	p=0.99
SF36v2 mental health	62.58±14.45	59.14±17.65	p=0.78
SF36v2 physical functioning	52.35±15.23	45.33±20.33	p=0.25
SF36v2 bodily pain	52.12±10.26	59.58±14.53	p=0.19
SF36v2 limitations due to physical health	44.65±13.24	41.85±14.20	p=0.85
problems			
SF36v2 limitations due to personal or emotional	67.58±25.22	65.32±13.96	p=0.82
problems			
SF36v2 emotional well-being	70.25±20.87	71.28±14.52	p=0.96
SF36v2 social functioning	47.36±22.32	45.95±15.24	p=0.84
SF36v2 energy/fatigue	50.21±19.27	51.55±19.58	p=0.87
SF36v2 general health perceptions	55.58±14.35	52.25±17.97	p=0.78

Received on June 20, 2016. Revised on December 27, 2016. Accepted on Januay 05, 2017. Online First January, 2017.